This post is the first in a series of technology and innovation blogs introducing the 12 teams participating in the 2018 Wood Stove Design Challenge in November.
By John Ackerly and Shoshana Rybeck, Alliance for Green Heat
By John Ackerly and Shoshana Rybeck, Alliance for Green Heat
Alistair Gauld with the VcV stove. |
The VcV is a valve controlled by the draft generated by the stove when burning, but making it work effectively on a wood stove and then getting that stove certified was a much longer journey than Brian initially expected. There is a huge need for an automated, “idiot proof” stove in New Zealand, but the market is not big enough to justify the costs so Brian set his sights on the North American market. In 2008, he hired Ben Myren to help integrate the VcV valve into a stove. So began one of the most innovative and promising new stove technologies on the US market.
Labeled diagram of on a VCV valve |
From the moment the consumer lights the stove, they can shut the door, sit back, and enjoy the heat until it needs to be reloaded, according to Ben Myren. At the time of ignition, the second VcV is engaged, as explained in an illustrative informational video on the model. The Secondary VcV (S VcV), a disc attached to the secondary air inlet, rises and falls relative to static pressure, which increases and decreases with the amount of combustion taking place in the firebox. The S VcV functions all the time and supplies just enough secondary air during a burn to maximize combustion efficiency. Once the static pressure decreases at the end of the burn and more oxygen is needed to increase combustion, the P VcV disc goes down again.
While most automated stoves and stove prototypes include a temperature sensor to help regulate air flow, thermometers require electronics and a control board which can be to be deceptively complicated and unhelpful to control combustion. Instead, static pressure can be a more reliable way to control what goes on inside the stove and what goes up the stove pipe. Ben says that temperature measurements can often be misleading when determining a stove’s combustion level and oxygen needs.
When people hear about how the VcV works they think that it is very similar to a bi-metalic coil, which responds to heat, and closes down an air inlet as the stove gets hotter. Bi-metalic coils have been used for decades and a few manufacturers still use them even though they can be unpredictable during the lab certification process. Bi-metalic coils respond to heat, whereas the VcV responds to static pressure. While heat must move from the firebox to the coils, any change in combustion will automatically change the airflow, thus inciting an immediate VcV response. Therefore, Ben credits VcV technology with being far more efficient and simply better than a bi-metalic alternative.
Advantages of Simplicity
EPA test stove on scale with test filters
being preheated in the background.
|
Brian and Ben also recognized and addressed one inherent problem in stove installations all over the US: varying heights of chimneys. The engine of a stove is its chimney, which creates a natural draft to pull both the primary and secondary air into the stove. But homes can have chimneys anywhere from 10 to 30 feet high, which dramatically impacts combustion, and stove manufacturers have no way to address this as they build to the height of the chimney in the test lab—which is 14 to 16 feet. Brian and Ben realized that they could fit the VcV with heavier or lighter discs so that the stove could work well with any chimney height.
At least one North America company has applied for licensing of the VcV technology and a stove with the VcV may also be licensed in New Zealand.
Team Goals
Brian and Ben are no strangers to the Wood Stove Design Challenge. An early prototype of the stove competed in 2014. These prototypes showed great promise and led to the stove being the very first North American wood stove to be tested and certified with cordwood.
Ben Myren lighting a stove at the 2013 Wood Stove Design Challenge |
Brian’s son Alister Gauld is also a part owner of the company and will be in Washington in November when the stove will be put through its paces by professional stove technicians to see whether it performs as designed. While Ben and his lab tech Eric Schaefer were just hired by Brian on a daily basis and have no financial stake in the company, they are proud of helping to develop the first non-electric automated stove in North America that can help clean up our air-sheds far better than stoves that can be left to smolder by their owners. The beauty of the VcV is that the owner doesn’t even have to know how it works inside or that it is a groundbreaking stove. From the outside it will look exactly like a traditional stove that will keep the house warm in a power outage.
Contact the team
Brian Gauld
Alistair@harts.co.nz
Eric Schaefer
Great work, I hope to see it for sale in a wood stove. Also, does the catalyst need to be turned on and off? Or is the catalyst always on like in the GraceFire StoveCat (http://www.healthyhearth.net/stovecatretrofit.html)?
ReplyDelete